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1. INTRODUCTION

If 4;, B;,j=0,1,..., N, are n X n constant matrices, det 4,5~ 0, and
0 = wy; < w; < " < wy = 7 are real numbers, then a differential-difference
equation of neutral type is

Z: Ad(t — w;) = ZO Bx(t — wy). (1.1)

A fundamental problem is to determine in what sense the asymptotic behavior
of the solutions of (1.1) is given from a knowledge of the solutions of the
characteristic equation
N
det 4(2) =0, AQ) = Y (A4; — By) e, (1.2)
3=0
Without exception, the results in the literature (see [1-5]) are based on the
assumption that the initial function ¢ and its derivative are defined. The
estimate for the growth of the solution and not the derivative of the solution
is then expressed in terms of the roots of Eq. (1.2) and ¢, ¢. This is very
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268 CRUZ AND HALE

unsatisfactory for the following reason. If a well-posed initial value problem
has been formulated for (1.1), then one has chosen a space S of functions
mapping [— 7, 0] into E® such that for any initial function ¢ in S there is a
solution x(p) of Eq.(1.1) with initial value ¢ which is continuous in ¢ and the
restriction of x(p) to [t — 7, t] always belongs to S. This defines a mapping
T(t): S— S and one would hope that the norm of this linear mapping
could be obtained from the solutions of (1.2). On the other hand, the results
in [1-5] use more smoothness properties for ¢ than are obtained for x(¢) and,
therefore, one is not estimating the norm of 7'(¢). It is the main purpose of this
paper to give a class of equations (1.1) for which one can estimate the norm
of 7'(¢) using Eq. (1.2). The results are stated in terms of general functional
differential equations which include differential-difference equations. An
application to perturbed linear equations is indicated by discussing the saddle
point property for nonlinear autonomous systems.

Finally, to avoid unnecessary complications in the specification of the basic
space S, we use the approach in [5] by considering the integrated form of

Eq. (1.1),
| 3 unte — )| = 3 Buste — ). (13)

k=0 k=0
For this equation, one has a well-posed initial value problem for any initial
function ¢ which is continuous on [— 7, 0] since it is not required that x be
' A : N : ;
differentiable in #, but only that 3, o 4;x(¢ — w;) be differentiable. Conse-
quently, it is possible to choose S as the space of continuous functions.

2. NOTATIONS AND SUMMARY OF KNOWN RESULTS

Let Rt = [0, 00), E" be a real or complex n-dimensional linear vector
space with norm | - |, r = 0 a given real number, and C be the space of
continuous functions mapping [— 7, 0] into E* with | ¢ | = sup_,<s<o | ¢(0)| -
Single bars are generally used to denote norms in different spaces, but no
confusion should arise. If x is a continuous function taking [¢ — 7, ¢ + A],
A >0, into E” then, for each ¢ € [o, o + 4], we let x; € C be defined by
x240) = x(t + 0), —r < 0 < 0. Suppose

Lip) = | 140000 o(0) (2.12)
o) = [ o)) (0 (2.1b)
[ @ o0)]| <9 11 (.19

D(g) = ¢(0) — &(9); (2.1d)
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where 7, u are n X 7 matrix functions with elements of bounded variation on
[— 7, 0] and y(s), s = 0, is continuous with y(0) = 0. An autonomous linear-
functional differential equation is defined to be

d
& Dl = L)), (22)

A solution x = x{¢p) of Eq. (2.2) through (0, ¢), ¢ € C, is a continuous
function defined on an interval [— 7, 4], 4 > 0, such that x, = ¢ and
D(x,) is continuously differentiable for ¢ € (0, 4) and satisfies Eq. (2.2). It is
proved in [5] that there is a unique solution x(p) through (0, ¢) defined
on (— o0, ), and x(p) (¢) is continuous in #, @. If the transformation
T(t): C— C is defined by

x(9) = Tt g 23)

then it is also shown in [5] that {T'(z), t == 0} is a strongly continuous semi-
group of linear operators with infinitesimal generator A4 :2(4)— C,

Ap(6) = ¢(6),
D(4) ={peC:9eC,¢(0) =) + Lip) 24

and the spectrum o(4) of A consists of all those A for which
0 o
det AN) =0,  AQ) = A [1 — f Py dﬂ(a)] - f &0 dn(0).  (2.5)
—r —

Moreover, there are real constants K > 1, a such that

l2dp)l = [ T@)p | < Ke*|p|, t=0, peC. (2.6)

The basic problem is now to determine the relationship between

inf{a : there exists a K = K(a) so that Eq. (2.6) holds}
and

sup{Re A : A satisfies Eq. (2.5)}.

For any A satisfying Eq. (2.5), there is a solution €%h of Eq. (2.2) for some
vector b. Therefore, sup{A: -} < inf{a: ---}. It certainly seems as if these
two numbers should be the same, but we are unable to prove this at the
present time. In [6], D. Henry has shown these numbers are equal if the
space C is replaced by W, , the space of functions which have square
integrable first derivatives. In order to obtain some results in C, we impose
in the next section some conditions on the “difference operator” D.
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3. THE CHARACTERISTIC EQUATION

Suppose p® is an 7 X z matrix function whose elements are of bounded
variation, y°(8) is a continuous nonnegative scalar function defined on [0, o0),

y%(0) = 0, and let
Di(p) = 9(0) — &(e); (31)
£ = [ [0 o(0) (3.1)

[ @aon9@ | <20 swp 150),  0<s<rn (19

~s<0C0

In this section, we consider in detail a special case of Eq. (2.2); namely,
the functional “difference” equation

DAyy) = D%g),  t=0,

Yo =@ (3-2)

and, in particular, the nature of the chracteristic equation of this system.
Afterwards, the results will be applied to obtain information about the
characteristic equation of the more general Eq. (2.2).

Let us denote the semigroup and infinitesimal generator associated with
Eq. (3.1) by T%¢) and A4°, respectively, and let

A90) =1 — j "0 4,9(0). (3.3)

The characteristic matrix of Eq. (3.2) is then given by A4%(}).
Along with Eq. (3.2), we consider the “homogeneous” equation
DAy) =0, =0, y=9, DYp)=0. (3-4)
DermvitioN 3.1. If DO is given in Eq. (3.1), the order apo of D° is defined
by
== inf{Re a : there is a K(a) with | T%) ¢ | < K(a) e**{ ¢ |,

Gpo =
t = 0, for all ¢ with D%g) == 0}. (3-3)
This definition is equivalent to
a,, = inf{Re a : for any ¢ in C, D%p) == 0, there is a
(3.6)

K(g, @) with | T%(t) g | < K(g, a) e, ¢ > 0}.
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In fact, since D° is continuous and linear, the set consisting of all g in C such
that D%e) = 0 is a Banach space and the operator T%¢) is a continuous linear
mapping of this space into itself for each ¢ > 0. The principle of uniform
boundedness now implies that the set on the right side of Eq. (3.6) belongs
to the set on the right side of Eq. (3.5). The converse inclusion is obvious and
this shows that a0 may be defined by either Eq. (3.5) or Eq. (3.6).

Notice that apo is determined by the exponential behavior of the solutions
of the homogeneous Eq. (3.4) and not the complete Eq. (3.2). The reason
for this is the following: Every constant function satisfies Eq. (3.2) regardless
of the nature of the operator D?. This is a consequence of the fact that A = 0
always satisfies the characteristic equation. The homogeneous equation is
considered to eliminate this obvious common relationship among all oper-
ators DP°,

In general, we do not know how to relate the number a0 with the roots of
the characteristic equation. However, the following lemma is a special case
for which this relationship is known. A more general result is contained in [7].

Lemma 3.1. If
N
Dp) =¢(0) — 3 Aw(— m), 0 <7 <, (3.7)
k=1

where 77, is vational if N > 1, then

@, =sup {Re A : det (I— Yy Ae ""’L) = 02 (3.8)
=1
Proof. If D%gp) = ¢(0), then ap = — oo. Suppose by is the sup in

(3.8) and @ > bpe . If y is a solution of D%, == 0, x, = ¢, and y(t) = e*’2(t),
then
Doevz,) = 0, 2y = e Vo,

If we let Dy(y) = D%e*), then
D) = $(0) — Z Aye™ (= )
and

bp, = sup

Re v : det (I -y Ake_("”)fk) = 0;

k=1

= sup

N
Re(A — a) : det (I - Ake"’”") = OE
=1
= dy, —a < 0.
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Therefore, D, is a uniformly stable operator and Lemma 3.2 in [8] implies the
existence of an « > 0, B > 0, f; > 0, such that

lzde ™)l <Betlevp | <P @], 120
Consequently, there is a 8, > 0 such that

[yl < B @] <Poe®* ], =0

"This implies apo << bpo .

For any ¢ > 0, there is a A with bpo — € << Re X { bpo and an n-vector
¢ such that y(¢) = e*c is a solution of D%, = 0. Therefore, apo > bpo — €
for every € > 0. This proves apo = b0 and the lemma.

LemMa 3.2, There exist ¢; in 2(4%, j=1,2,.,n, such that if
D = (py ye-ey Pn)s then DY(TO2) D) = DYP) = I, the identity. Also, for any
a > apo , there is an M = M(a) such that

| T @ | < M(L+ e®),  £>0. (3.9)

Proof. Let us consider the Eq. (3.4) and, in particular, all solutions of
this equation which are polynomials in #. If we let

1 df

0 —
Piu(d) = Tav

a0, j7=01,2,..,
where 4%}) is defined in Eq. (3.3), then a direct calculation shows that
IO =Y tmr gy (3.10)
k=0 k!

is a solution of Eq. (3.4) if and only if

A, %m — 0, 3.11)
P0) P0) - Pp.a(0) Xy
A0 — O P 10(0) P mO(O) o = ®m—1
0 0 - PY0) %

Let 2%(6) be the conjugate transpose of the matrix p%(f) and D° be the
operator on C given by

D) =0~ [ EROI9@),  esC.
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A direct calculation also shows that

Z(t) =} B A
=0 :
is a solution of

DYZ) =0, t >0,
Zy=9, DYp)=0
if and only if

Py(0) o - 0 B

Y0y P0) 0 Bm
Amo — - , Bm — .

PrnQ) P.20) - PO0) Bo

where P9(0) is the conjugate transpose of P%(0), j =1,..., m + 1.

There exists an m such that f,, = 0 for every solution ™ of 4,,°8™ = 0.
Choose m, as the smallest value of m for which this is true.

Let fm be the conjugate transpose of f7, Define the inner product
(B™o, o) for mm, X n matrices o™ and ™o by the sum of the scalar products
of rows of fmo with corresponding columns of a™. It is clear from the choice
of my, that the null space A" (A;)"o) of A;’no is a subset of the set of all nmy, X n
matrices ™0 with ,B’mo = (. For

I
e |01
0

i.e., yim, is the n X n identity matrix and y; = 0 for j = m,, and for every
,8’"0 eN 4>, o) it follows from the definition of the inner product that
(B™o, y™o) = 0. Now, since clearly A° is the adjoint operator to A;, with
respect to this inner product, y™e must belong to %(A4°, .)» the range space
of 45, . Therefore

1
0

Am OOLMO == : >
0
has a unique nm, X m, matrix solution which we denote as in Eq. (3.11)
with each «; an # X » matrix.
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If y is defined by Eq. (3.10) for this o™ and m = m,, , we see that

DYy = 3 D8 (¢ 4+ k)

Te=0

= Wf [i PJO+1(0) (k BE ] Xng—I

k=0 Lj=0

my g1
= z [ z PV+1(0) ocm')—l-—v:l n
1=0 L v==0
=1, te(— oo, co).

Therefore, y(f) is a continuously differentiable solution of Eq. (3.2) on
(— ©0, o0) with initial value @ at t = 0 such that D’ = I. Since D y,) = 0
for t € (— o0, o), it follows that @ is in Z(A4°).

It remains only to prove the estimate (3.9). For any a > apo , there is a
constant M, = M;(a) such that for any @ with ape + (2 — apo)2 < @ < q,

5] < Mye™, £,

since 7, satisfies Eq. (3.4). Choose @ 74 0. Since
t+0
We+0)=00) + [ ) ds
0
for t =0, — r < 0 < 0, this yields the estimate

edt
Ol <M, (1+5), >0
Since @ < a, one can obtain the estimate (3.9).
For any H e C([0, c0), E®), H(0) =0, it follows from [8] that there

is an 7 X n matrix function BO: [— 7, ©0) — E® of bounded variation on
compact sets of [— 7, o), Bt) =0, — r <{ ¢ << 0, such that the solution of

Di(y) = D) + H(D, 120, .
Yo=9o )

is given by the variation of constants formula as

yo=TOp — [ [MELIHO). (3.13)
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Levma 3.3, For any a > ap, € > 0, a + € £ 0 there is an
M = M(a, €) > 0 such that

i f B HE) | < M1+ ey et sup [H()|, >0 (314)
0 o<

st

Proof. 1f y is the solution of Eq. (3.2) and @ is given in Lemma 3.2, then
2, =y, — TO@) @D%p) satisfies D%z;) =0, g, = ¢ — PD%p). Therefore,
for any a > apo , there is a K, such that

| 7] < Kpe® | 50 | = Kyt | @ — ODYp)] -

Lemma 3.2 and the continuity of D® imply the existence of a K, = Ky(a)
such that

[T | < Kl +e)lel, =0

Using an argument similar to the proof of Theorem 3.1 in [9], there is a
K = K{(a) > 0 such that

B0+ [ 1B — ) <K(+ e, 130

If % = k() is the integer such that & <{¢ <<k + 1, then, for any ¢ >0,
a+ e£0,

k41

| [ Bame| <K 3 0 4+e) s 1)

05t

[K(k + 1) + kil e‘“’f"’} sup | H(s)|

—1 <s<t

g(a+e)(k+1) —1
<[Ke+ 0+
<

M(1 + e4f) et sup | H(s)|

<<st

sup | H(s)]

0<Cs<Ct

for some constant M. This proves the lemma.

Lemma 3.4, For any a > ape, the roots of

det AQ) =0,  AA) =T — f * 00 du0(6) (3.15)

—r

have veal parts less than or equal to a and there is a 8(a) > 0 such that
| det 4%Q)| = 6(a) on Re A = a.
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Proof. 1If X satisfies Eq. (3.15), then there is a nonzero #-vector b such that
Y(t) = e'th satisfies D% y,) == 0. Definition (5.1) of ape implies the first part
of the lemma.

If the second statement of the lemma is not true, there is a sequence {A.},
k =1, 2,... of points on Re A = a such that | det 4%} < 1k, &k =1, 2,.....
This implies the existence of an eigenvalue of 4%(A,) with modulus < (1/&)t/".
Suppose ;. is such an eigenvalue of 4°(A;) and b, , | b; | = 1, is an eigenvector
associated with §; .

The function y*(2) = e*'b,, satisfies

Dy =e* by, =0,
yok = e'by, Do(yok) = iy .

If @ is the matrix defined in Lemma 3.2 and 2z =y — T) B{.b;, then

D%zf) = (e** — 1) { b, t2=0,
2ot = x® — Dby, DY(z,*) =0.

The variation of constants formula (3.13) implies
13 0 3 ¢ 0 M
2 = T(t) =, — fo [d,B°_] (¢ — 1) Libs -

From the fact that D%(z¥) = 0, the definition of apo and Lemmas 3.2 and
3.3, for any @, app <a<a, € >0, @a+ e£0, there is a constant
M = M(a, ¢) such that

lyd | < | TO1) PLiby | + | 27|
<M+ e G| + M G | + su£)<0 e (3.16)

—r<f<

+ M1+ &) et | L | sup | —1].

O<Cs=<t

On the other hand, the definition of y,* and the fact that 4 < a implies the
existence of a T' > 0 such that

[y F| = e sup e > Me® sup e%,
—r<6<0 —r<6<0

fort>T, k=1,2,... Since {;, — 0 as k£ — oo, this contradicts (3.16) and
proves the lemma.
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LEMMA 3.5. Suppose D° is defined in Eq. (3.1), 4%}) in Eq. (3.3),
ee P [—r 0], E®), and  is an n X n matrix function of bounded variation.
For any a > apo , the equation

det AX) =0,  AQ) = A [AO()\) - f ’ e""cc(@)d] — f P eedn0)  (3.17)

has only a finite number of roots A with Re A = a.

Proof. If we consider A()) as the characteristic matrix of a neutral-
functional differential Eq. (2.2), then the estimate (2.6) implies that there
exists a real number ¢ such that Re A < ¢ for all A satisfying Eq. (3.17). If
a > ¢, then the above lemma is true. If @ < ¢, then Lemma 3.4 implies there
is a 8 = 8(a, ¢) > 0 such that det 4¢(A) =3, @ << Re A < ¢. From Eq. (3.17),
the Riemann—Lebesgue lemma, and the fact that u° satisfies Eq. (3.1c),

det AQ\) = X240 + h(A),

where A(A)/A" — 0 uniformly as |A]|— o0, a << ReA <{¢. Therefore, all
zeros of Eq. (3.17) in this strip must be bounded. Since det 4(}) is an entire
function of A, the lemma is proved.

4, EsTIMATES ON THE COMPLEMENTARY SUBSPACE

Suppose D° is defined in Eq. (3.1), x € #Y[— 7, 0], ™), n is an # X n

matrix function whose elements are of bounded variation and let

Dig) = D) — | a(0)9(0) 0 50) — [ [du(0)] 900),

: R
Lig) = | [4n(0)] 9(6).

For the linear system Eq. (2.2) we denote the associated semigroup and
infinitesimal generator by 7'(¢) and A4, respectively. Recall that the spectrum
a(4) of A coincides with the roots of the characteristic Eq. (2.5).

For any a > ape , it follows from Lemma 3.5 that the equation (2.5) has
only a finite number of roots A with Re A 2 a. If 4, ={d €o(4) : Re A = a},
then it is shown in [5] that the space C can be decomposed by 4, as
C =P, ®Q, where P, , Q, are subspaces of C invariant under T'(¢) and 4,
the space P, is finite-dimensional and corresponds to the initial values of all
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those solutions of Eq. (2.2) which are of the form p(f) e, where p(t) is a
polynomial in # and A € 4, . Therefore, the spectrum of 4 restricted to 0, is
o(A)\, . Our main goal in this section is to prove there is a constant K{a)
such that

| T | <K@e ||, t=0, p€Q,.

To do this, we need the following lemma which is essentially contained in
the proof of Theorem IV.1 of [5].

Lemma 4.1.  Suppose a is a real number such that only a finite number of
roots of Eq. (2.5) have real parts greater than or equal to a, there is a constant
m > 0 such that, for all real £,

| det d(a + #€)] =m >0 and A Ya +i€) =0( £|7)

as | €| — oo. If C is decomposed by A, ={Aeco(d):Red =a} as
C=P,®Q,, then there exists a K = K(a) > 1, such that

I TO el <Ke(lo|+ @), t20, peP(A)NQa. (42)

For any H € C([0, o), E"), H(0) = 0, it follows from [9] that there is an
n X n matrix function B : [— 7, 0] = E** of bounded variation on compact
sets of [— 7, ), B(t) =0, — 7 <{ ¢ < 0, such that the solution of

2 D) — HOI =L(s), 30,
(4.3)

Xy =@

is given by the variation of constants formula as

w0 =109 — [ MBI HO = TW 9+ [ B dHE. @4

If we let #]= be the projection of &, onto P, defined by the above decomposi-
tion of C, then it follows that there is a Bfe, t > 0, BJ« =0, of bounded
variation on compact subsets of [0, c0) such that xle satisfies Eq. (4.4) with
%y , @, B, replaced by xfe, %e, Bfe, respectively. If we defineB9s — B; — B},
then (4.4) is equivalent to
P, P ¢ P,
wje = T(0) o™ — [ [4,B7°] H(s),
° 4.5)

t—s

50 = T(0) % — [ [4.B0] H().
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TrrEoreM 4.1. Suppose D is given in Eq. (4.1). If a > ape is such that
A € o(A) implies Re A £ a and C is decomposed by A, = {A € a(A) : Re A > a}
as C = P, DQ,, then there is a constant M = M(a) such that

[T e | < Me*t|p|, 20, 9€0Q,, (4.6)
1

| B |+ [ 1B < Me®, 120, @7
[§]

where B is the matrix occurring in the variation of constants formula (4.4) and
B2 is defined as above.

Proof. Case l. o =0,L = 0; that s, the equation
Do) = D), t30, s=ge0y,. (4.8)
If @ is the matrix given in Lemma 3.2, then
T(t)p = T°(t) D% Dg) + T°() (p — P D*(g)).

Since D% — ®D%p)) = 0 and each column of @ is in D(4°), the definition
of ape and Lemmas 4.1 and 3.2 imply the existence of K = K(a) such that

| T°0) ¢ | < Ket! | Dg)| + Ke* | @ — 0% D%g)] .

Since D is continuous, this completes the proof of the theorem for the case
«=0,L=0.
Relation (4.7) follows as in the proof of Theorem 3.1 in [9].

Case 2. a5 0,L == 0. In this case, 4(}) is given by Eq. (2.5),
det A(X) = A" det 4%(A) + h(}),
adj 4(A) = A*~tadj 49Q0) + G(}),
Ay = [det A(A)]2 adj A()) 4.9)
= A0+ Q)

G(\) — AN A(N)

"N == ge A0

where adj 4(}), adj 4%(}) designate the cofactor matrices of A(X), 4%}, re-
spectively. If @ > apo, then Lemma 3.4, the fact that u° % are of bounded
variation, p® is nonatomic at zero and « & LY[— r, O], E"") imply that
AA) = O, GQA) =02, W(QA) =0X? as |A]|— o0, Red=a.



280 CRUZ AND HALE

Using standard Laplace transform techniques, for any ¢ in 2(4) N Q,
T(t) p is given by

TOw0) = [ et [470) 2 |De) = [ dul@) [ e0-og(e) do
° , ) (4.10)
— (B [ g(a) da; — (o) da] an,

where p is the # X 7 matrix function of bounded variation given by

~+iw

1(6) = p9(6) + f : os)ds  and fc = Qi) lim [

=1 )
e a—iw

The term containing fz er0—p(a) du and the one containing % are
treated in the same manner as in the proof of Theorem IV.1 of [5]. Using
the fact that 4-1(2) is given by Eq. (4.9), the remaining terms in Eq. (4.10)
may be written as

f e [—}\— Aot - w| e [D@) — 2 f i du(p) | : NE=Ip(w) dec] A
=T%t)p + fc W (A) e [D(fp) —A fo_r dp(B) f: MB=g(a) da] dA.

The first term in this expression was treated in Case 1. Since W(}) = O(A-2)
as | A} — o0, Re A = g, the first term in the integral admits an estimate of
the form Ke®t{ @ |. Since AW(A) = O(1) as | A | > o0, Re A = q, the last
term in the integral can be shown to have an estimate of the same form by
using arguments similar to the one used for the 7 terms above.

Since Z(4) is dense in C, estimate (4.6) holds for all p in C N Q, . Relation
(4.7) is verified as in the proof of Theorem 3.1 in [8]. This completes the
proof.

CoroLrLAry 4.1, Suppose D is given in Eq. (4.1), ape < 0, and all roots of
Eq. (2.5) have negative real paris. Then there is an o > 0, K > 0 such that

[Tt e| < Keei|lg|, t=0, peC,

1
|Bol+ [ 14Be | < Ko, t>0.

Proof. Use Theorem 4.1 with @ = — « greater than all roots of (2.5).
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5. THE SADDLE POINT PROPERTY

Suppose D, L satisfy Eq. (2.1). In this section, we consider the linear system
Eq. (2.2) along with the perturbed linear system

2 ID() — Gl = L)) + F) (51)

where F, G satisfy the relations

F0)=0, G(0)=0,
[F(@) —F)l <pl(o) o — 41, (2)
| Glp) — G < plo) @ — ¥ 1,

for e, |$| <o and some continuous.nondecreasing function p(s) with

#(0) = 0.
It will also be assumed that the roots of the characteristic equation

det A(\) = 0, A@%:Ap—fiﬂhm@]~fi@%M® (5.3)

have nonzero real parts and aj, < 0, where aj, is defined in Definition 3.1.
This latter assumption implies that the space C can be decomposed as

C=U®S,

where U is finite-dimensional and the semigroup 7'(¢) generated by Eq. (2.2)
can be defined on U for all ¢ € (— o0, o) and there are K > 0, « > 0 such
that

[Tt o |

< Ket|o|, t<0, peUl, (5.4)
| T(t)p| <Keet|p|, t= )

0, peS.

For any ¢ € C, we write ¢ = @V + ¢%, ¢V € U, ¢ € S. The decomposition
of C'as U @ S defines two projection operators

my:C—>U, 7,U=U, 7g:C—S, #8=S ag=I—my.

Suppose K, « are defined in Eq. (5.4) and x(¢) is the solution of Eq. (5.1)
with initial value ¢ at zero. For any 8 > 0,let B, ={p € C: | ¢ | < 8} and

s ={pe C:¢°€Bypg, % (p)€ By, 1 =0}

(5.5)
Us ={peC:9U € Bypg, x(p)€Bs, t <O}
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If I' is a subset of C which contains zero, we say I' is tangent to S at zero if
| mye /| msp | = 0 as @ ->0 in I'. Similatly, I' is tangent to U at zero if
| ms@ |/| myp | — 0 as ¢ >0 in I

We now give the main result of this section, generalizing a theorem of Hale
and Perell6 [10] for retarded functional differential equations.

THEOREM 5.1. With the notation as above, there is a 8 > O such that =g is a
homeomorphism from the set S5 onto S N Byop and & is tangent to S at zero.
Also, 7y ts a homeomorphism from the set Uy onto U N By op and U is tangent
to U at zero. Furthermore, there are positive constants M, v such that

[xdp)l < Met ||, t=0, ¢ in %,

ladp)l < Met| |,  t<0, @ in . (5:6)

Finally, if F(p), G(p) have continuous Frechét derivatives with respect to @
and hg : S O By o —> % 3 hy : UN By — U5 are defined by hyp = w5,
® €SN Byjog s hyp = nip, ¢ € UN Byoy , then hg and hy have continuous
Frechét derivatives.

Proof. The proof here will follow as much as possible the proof of the
saddle point property for ordinary differential equations given in Hale [11].
Using the above decomposition of C, the solution ¥ = x(gp) of Eq. (5.1) can
be written as

x, =% + x,Y5 (5.7a)
8 = T — )5 + [ BLIGE) +Fw) &l (57b)
=Tt — o),V - f BY [d,G(x,) -+ F(x,) ds]; (5.7¢)

for any o € (— o0, 00). Furthermore, K, « can be chosen so that

BY 1+ [ 4Bl <K, 1<0,

(5.8)
| B | +f |d.BS | <Ke™, t>=0.
Relations (5.8) also imply that K can be chosen so that
f |dBY, | <K, 1 <+<0; (5.92)

[ VB, | <K t>r>0. (5.9b)
0
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Using relation (5.9) and proceeding in a manner very similar to [10], one
finds that for any solution of Eq. (5.1) which exists and is bounded for ¢ == 0,
there is a % in S such that

v, = T(t) ¢ + f *BS[4.G(x) + F(xy) ds]
. 0 (5.10)
+ j BUd.G(x,,5) -+ Fxy,s) ds]

for ¢ == 0. Also, for any solution x of Eq. (5.1) which exists and is bounded for
t < 0, there is a Y in U such that

se =T " + [ BLIAGE) +F(x) 4]
, 0 (5.11)
+ | BSJdGlnie) + Flvy) db]

for t <{ 0. Conversely, any solution of Eq. (5.10) bounded on [0, o) and any
solution of Eq. (5.11) bounded on (— oo, 0] is a solution of Eq. (5.1). Of
course, estimates made in the integrals involving G are made using the rela-
tion

f ' B, d,G(x}) = — B,_,G(x,) — f t [4,B;_]] G(x,). (5.12)

We first discuss the solution of (5.10) for any ¢ sufficiently small. Suppose
K, o are the constants used in Egs. (5.6), (5.8), (5.9), and (o), o > 0, is the
function given in Egs. (5.2). Choose 8 > 0 so small that

(88 + 25V k) <1, 8K+ o) (1 uE)RO) <5 (513)

and define %(8) as the set of continuous functions y : [0, 00) — C such that

def )
|y = sup || <—2—,
O{t<oo

¥¢5 = 0. The set %(8) is a closed-bounded subset of the Banach space
C([0, ), C) of all bounded continuous functions mapping [0, c0) into C
with the uniform topology. For any y in %(8) and any ¢%in S, | ¢% | < §/2K,
define the transformation & = () taking %(8) into C([0, o0), C) by

(Zy); = ft B:s—s[dsG(ys =+ T(S) (PS) + F(y, + T(s) (PS) ds] (
o 5.14)
+ [ BUAG(s + Tt +9) 9°) + F(ies + Tt + 5) 9°) 5]
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for ¢ > 0. It is easy to see that 2y e C([0, o), C) and (Zy)5 = 0. Also,
|y + T(2) @5 | <8 for all £ > 0. Consequently, from Eqs. (5.12), (5.13),
(5.14), (5.4) and (5.8),

(@) < (4 + 22 we) s < 5

and & : 9(8) — %(8). Furthermore, in a similar manner,
2K 1
(@) — (@2 | < (4K + =) w(®) |y — 2| <5 |y — 7|

for t > 0, ¥, z € 9(8) and £ is a uniform contraction on %(8). Thus, & has
a unique fixed point y* = y*(¢°) in ¥(8). The function x,* = y,* + T(t) ¢°
obviously satisfies Eq (5.10) and is the unique solution of Eq. (5.10) with
|y, ] < /2 and x,5 = ¢5. The fact that Z is a uniform contraction on %(3)

implies that y*(e®) and therefore x*(¢®) are continuous in ¢°.
With x* defined as above, if x* = x*(¢5), #* = x*(&°), then

xk — 8% = T(0) (9° — §°) — BS[G(e*) — G(#°)]
— [ MBI 166 — 6EN] + [ B PGy — P
- f [4,:BY] [G(xE.) — G

+ f BY[F(xt,.) — F(ZF.)] ds.

Consequently, if u(f) = | x,* — &* |, p = u(8), then Eqs. (5.4) and (5.9)
imply that
u(t) < K(1 4+ p) e=**u(0)
+p j | d.BS., | u(s) + Ky J "y ds (5.15)
+,uj | d,BY, Iu(t-}—s)—FK,uf e ult + 5) ds.

For any ¢ = = 2= 0, relations (5.8) and (5 9) and this latter expression with
the first mtegral written as [o = [+ [ imply that

u(t) < K(1 + p) e*u(0) + Kue—=" sup u(s)

<s<KT

+ Kp sup u(s) + Ku ‘“(‘“s’u(s) ds (5.16)

TSt

4+ Kp sup ut + s) -+ Kn J. eyt -+ s) ds.
0<s 0
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We first show that u(#) — 0 as £ — 0o. If this is not the case, #(¢) bounded
for ¢ > 0 implies there is a v > 0 such that lim,,, #(f) = » > 0. For any
0 < 6 < 1, there is a #; > 0 such that #(¢) < 0-%, ¢ > t; . Consequently, for
7 =t in Eq. (5.16) and ¢ > 1, , this yields

u(t) < K(1 4 p) €*u(0) + Kpe™* sup u(s)

0<Cs<ty

+ Kty + Kps | :1 =90y ds -+ -I%i 61
+K (1 + {7) by,
The right side of this equation has a limit as £ — 0o which is
2K (1 + i—) wbly < -% 61 < 61y,

Therefore, Iim,.., u(t) <v which is a contradiction. Thus, u(f)—0 as
t— o0.

Since u(t) — 0 as ¢ — 00, #(¢) has a maximum, and an argument similar
to the preceeding shows that u(t) = 0 if #(0) = 0. Thus there will be a
constant such that u(t) < (const) %(0), £ = 0.

Let o(t) = sup;, u(s). Since u(t) — 0 as £ — oo, for every ¢ 2= 0, there is a
t; == t such that 9(2) = o(s) = u(t;) for t s <1y, v(s) < o(ty) for s >, .
Therefore, from (5.15),

o(t) = u(ty) < K(1 + p) €*"u(0) + Kp sup  u(s)

sty

+ Kp (f: + f:l) et Iy() ds + Ku (1 + —(l:) v(ty)
< K(1 + p) e@(0) + K sup o(s)

sty
¢ —ce(tys) 2
—-{—K,ufoe o(s) ds + Kp (1 + =) o(t)
< K(1 + p) e9(0) + Kp Sup 2(s)

<s<t

+ Ku ft e~ =y(s) ds - Kp (1 + —i—) o(t).
0

Since Kpu(l -+ 2a1) < %, we have

2(t) < K,(8) e>%0(0) + Ky(8) os<ug o(s) + K,y(8) j t e~y (s) ds, (5.17)
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where
- K(1 + w(3))
Kl(g) = 1 — K,LL(S) (1 + 204—1) < 2K(1 + ."“(8))»
Ky(8) = Eu(®) < 2Ku(S).

1 — Ku(8) (1 4 2«71
Our next objective is to show that o(¢) satisfying Eq. (5.17) approaches
zero exponentially. To do this, we first show that
o(t) < Ky®) v(0),  Ky(d) = 2K;(9)- (5-18)
In fact, if this is not the case then thereis a7 > 0 such that o(2) << K;3(8) v(0)
for 0 < ¢t < 7, 9(r) = Ky(8) ©(0). Consequently, Eq. (5.17) implies
Ky(8) (0) = v(r) < [Ky(8) + Ky(8) Ky(8) + Ky(8) Ky(8) o] 2(0)
= [} + K,(8) (1 4 o 1)] Ky(3) v(0)
< Ky(9) ©(0)
since K,(8) (1 -+ o) << 2Ku(8) (1 + o) < 4. This contradiction shows

that Eq. (5.18) is satisfied for all ¢ > 0.
Using (5.18) in (5.17), we have

o(t) < Ky(8) e1o(0) -+ Kof8) Kol®) (1 + D) 0(0), 0.

Choose 8 = 0 so that K;(8) e~® < L. Since K,(8) Ky(8) (1 + o) < 4, it
follows that 9(8) << (2) (0). Finally, since the initial value 0 has no particular
significance for autonomous equations, it follows that o(t 4 ) < o(z) for all
t > 0. This clearly implies the existence of an oy > 0, K > 0 such that

o(t) < Kue ™ '(0).
Consequently, returning to the definition of v and u, we have
| &%) — @) < M| ¢f — 7|, t>0.
Since x*(0) == 0, this implies that Eq. (5.6) is satisfied.

The above argument has also shown that

5’s=§<P€C=tp:xo*(¢5),¢sin3,|¢S|<~2§ .

If g : S N Byop — 5 is defined by hgp® = x,*(¢%), then kg is continuous
and

ho9%) = + | BUILGE ) + Fs, () )
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Also, with an argument similar to the above, one shows that

S __ &S
| help) — () > L2 T

for all 5, &5 in S M Byx, and thus, hg is one-to-one. Since A3 = =y is
continuous, it follows that /g is a homeomorphism,
From the fact that x,*(0) = 0, x*(¢") satisfies Eq. (5.6) and

0 0
s (e%) = — [ [dB% Gl (6" + [ BLF( %) do,
we also have

[y (@%)] < 2K%(1 + o) p2K | % |) [ 97 |

and this shows that .7} is tangent to S at zero.

If F, G have continuous Frechet derivatives F'(p), G'(p) and satisfy Eq.
(5.2), then | F'(p)| << p(8) for | @ | < 8. From Eq. (5.14), it follows that the
derivative Z'(y) of Py with respect to ¢ evaluated at 5 in S is

@) )= [ BLIUG .+ T ) TO) ¥
+F (0 + T() 95) T §9 de
[ BUAG (s + T+ 999 TC 4 )98
P (o - TG+ 9 ¢) T+ 995 ds], 120,

Since | T(s) 5 | < K | ¢S | and p(3) satisfies Eq. (5.13), it follows that
(Z' ()¢9 ] < K1 4 o) p(d) |47 ] < 11_6 [$s1, t=0.

Using the fact that the mapping £ is a uniform contraction on %(8), one
obtains the differentiability of Zg(e%) with respect to ¢°. The argument for
%5 is applied similarly to the above to complete the proof of Theorem 5.1.

CoroLLARY 5.1. Under the hypothesis of Theorem 5.1, there is a § >0
such that each solution of Eq. (5.1) with initial value in B either approaches zero
as t — oo (and then exponentially) or leaves By for some finite time. Any solution
with initial value in By which is defined for t < — r must either approach zero as
t — — oo or leave B, for some finite negative time.
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Proof. Thereisak > 1suchthat | ¢® | < k|| forall pin C. Suppose &
is given as in Theorem 5.1 and choose 0 << 8 < 8/2Kk. This §; serves for the
8 of the corollary. A similar argument applies to the last statement of the
corollary.
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